Even though deep neural networks (DNNs) achieve state-of-the-art results for a number of problems involving genomic data, getting DNNs to explain their decision-making process has been a major challenge due to their black-box nature. One way to get DNNs to explain their reasoning for prediction is via attribution methods which are assumed to highlight the parts of the input that contribute to the prediction the most. Given the existence of numerous attribution methods and a lack of quantitative results on the fidelity of those methods, selection of an attribution method for sequence-based tasks has been mostly done qualitatively. In this work, we take a step towards identifying the most faithful attribution method by proposing a computational approach that utilizes point mutations. Providing quantitative results on seven popular attribution methods, we find Layerwise Relevance Propagation (LRP) to be the most appropriate one for translation initiation, with LRP identifying two important biological features for translation: the integrity of Kozak sequence as well as the detrimental effects of premature stop codons.
translated by 谷歌翻译
虽然ImageNet最初被提出为计算机愿景领域的性能基准的数据集,但它也支持各种其他研究工作。对抗机器学习是一种这样的研究努力,采用欺骗性输入来制作错误的预测。为了评估对抗机器学习领域的攻击和防御,Imagenet仍然是最常用的数据集之一。但是,尚待调查的主题是对抗性实例被错误分类的课程的性质。在本文中,我们对这些错误分类类进行了详细的分析,利用了想象群类层次结构并测量了对逆势示例的不受干扰的起源中上述类别的相对位置。我们发现71%的普遍例子,即实现模型 - 模型对抗性转移性的普遍例子被错误分类为对底层源图像预测的前5个类之一。我们还发现,实际上,大量未确定的错误分类子集实际上是分类到语义上类似的课程。根据这些调查结果,我们讨论在评估未确定的对抗性成功时需要考虑到Imageenet类层次结构。此外,我们倡导未来的研究努力,以合并分类信息。
translated by 谷歌翻译
虽然近年来,深度神经网络(DNN)的采用率大幅增加,但尚未发现对对抗对抗例子的脆弱性的解决方案。因此,大量的研究工作致力于解决这种弱点,许多研究通常使用源图像的子集来生成对抗示例,将该子集中的每个图像视为相等。我们证明,实际上,不是每个来源图像都同样适用于这种评估。为此,我们设计了一个大规模的模型到模型转移性方案,我们通过利用三种最常用的攻击来精心分析来自想象成中的每个合适的源图像中的每个合适的源图像。在这种可转移性方案中,这涉及七种不同的DNN模型,包括最近提出的视觉变压器,我们揭示了在模型到模型转移性成功中获得高达12.5美元的差异,平均为1.01美元L_2 $扰动,平均每平均$ 0.03 $($ 8/225 $),当所有合适的候选人中随机采样1000美元的源图像时,每次$ 0.03 $($ 8/225 $)。然后,我们采取一个第一个步骤评估用于创造逆势示例的图像的稳健性,提出了许多简单但有效的方法来识别不合适的源图像,从而使得可以减轻实验中的极端情况并支持高质量的基准测试。
translated by 谷歌翻译
稀疏性已成为压缩和加速深度神经网络(DNN)的有前途方法之一。在不同类别的稀疏性中,由于其对现代加速器的有效执行,结构化的稀疏性引起了人们的关注。特别是,n:m稀疏性很有吸引力,因为已经有一些硬件加速器架构可以利用某些形式的n:m结构化稀疏性来产生更高的计算效率。在这项工作中,我们专注于N:M的稀疏性,并广泛研究和评估N:M稀疏性的各种培训食谱,以模型准确性和计算成本(FLOPS)之间的权衡(FLOPS)。在这项研究的基础上,我们提出了两种新的基于衰减的修剪方法,即“修剪面膜衰减”和“稀疏结构衰减”。我们的评估表明,这些提出的方法始终提供最新的(SOTA)模型精度,可与非结构化的稀疏性相当,在基于变压器的模型上用于翻译任务。使用新培训配方的稀疏模型准确性的提高是以总训练计算(FLOP)边际增加的成本。
translated by 谷歌翻译
血浆定义为物质的第四个状态,在高电场下可以在大气压下产生非热血浆。现在众所周知,血浆激活液体(PAL)的强和广谱抗菌作用。机器学习(ML)在医疗领域的可靠适用性也鼓励其在等离子体医学领域的应用。因此,在PALS上的ML应用可以提出一种新的观点,以更好地了解各种参数对其抗菌作用的影响。在本文中,通过使用先前获得的数据来定性预测PAL的体外抗菌活性,从而介绍了比较监督的ML模型。进行了文献搜索,并从33个相关文章中收集了数据。在所需的预处理步骤之后,将两种监督的ML方法(即分类和回归)应用于数据以获得微生物灭活(MI)预测。对于分类,MI分为四类,对于回归,MI被用作连续变量。为分类和回归模型进行了两种不同的可靠交叉验证策略,以评估所提出的方法。重复分层的K折交叉验证和K折交叉验证。我们还研究了不同特征对模型的影响。结果表明,高参数优化的随机森林分类器(ORFC)和随机森林回归者(ORFR)分别比其他模型进行了分类和回归的模型更好。最后,获得ORFC的最佳测试精度为82.68%,ORFR的R2为0.75。 ML技术可能有助于更好地理解在所需的抗菌作用中具有主要作用的血浆参数。此外,此类发现可能有助于将来的血浆剂量定义。
translated by 谷歌翻译
近年来,稀疏神经网络的使用迅速增长,尤其是在计算机视觉中。它们的吸引力在很大程度上源于培训和存储所需的参数数量以及学习效率的提高。有些令人惊讶的是,很少有努力探索他们在深度强化学习中的使用(DRL)。在这项工作中,我们进行了系统的调查,以在各种DRL代理和环境上应用许多现有的稀疏培训技术。我们的结果证实了计算机视觉域中稀疏训练的发现 - 稀疏网络在DRL域中对相同的参数计数的稀疏网络表现更好。我们提供了有关DRL中各种组件如何受到稀疏网络的影响的详细分析,并通过建议有希望的途径提高稀疏训练方法的有效性以及推进其在DRL中的使用来结论。
translated by 谷歌翻译
神经网络的架构和参数通常独立优化,这需要每当修改体系结构时对参数的昂贵再次再次再次进行验证。在这项工作中,我们专注于在不需要昂贵的再培训的情况下越来越多。我们提出了一种在训练期间添加新神经元的方法,而不会影响已经学到的内容,同时改善了培训动态。我们通过最大化新重量的梯度来实现后者,并通过奇异值分解(SVD)有效地找到最佳初始化。我们称这种技术渐变最大化增长(Gradmax),并展示其各种视觉任务和架构的效力。
translated by 谷歌翻译
传输学习方法旨在使用在丰富的源域上掠过的模型来提高数据稀缺目标域中的性能。一种成本效益的策略,线性探测涉及冻结源模型并培训目标域的新分类头。此策略的表现优于更昂贵但最先进的方法 - 将源模型的所有参数微调到目标域 - 可能是因为微调允许模型从中间层利用有用的信息否则被稍后的净化层丢弃。我们探讨了这些中间层可能直接剥削的假设。我们提出了一种方法,头对脚趾探测(Head2ToE),其从源模型的所有层中选择特征,以训练目标域的分类头。在VTAB-1K的评估中,Head2Toe与平均微调获得的性能相匹配,同时减少培训和储存成本一百倍或更多,但批判性地,用于分配转移,头部2ToE优于微调。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
人类活动识别(HAR)是健康监测的关键应用之一,需要连续使用可穿戴设备来跟踪日常活动。本文提出了一种适用于适用于低功率边缘装置的节能HAR(AHAR)的自适应CNN。与传统的早期退出架构不同,这是基于分类信心的出口决策,AHAR提出了一种新的自适应架构,其使用输出块预测器选择在推理阶段期间使用的基线架构的一部分。实验结果表明,传统的早期退出架构遭受性能损失,而我们的自适应架构提供类似或更好的性能作为基线,同时节能。我们验证了从两个数据集合机会和W-Har分类机置活动的方法。与机会数据集的雾/云计算方法相比,我们的基线和自适应架构分别显示了相当的加权F1得分为91.79%,分别为91.57%。对于W-HAR数据集,我们的基线和自适应架构分别优于最先进的工程,其加权F1分别为97.55%和97.64%。与机会数据集的作品相比,真实硬件对真实硬件的评估表明,我们的基线架构是显着的节能(少422.38倍)和记忆效率(14.29倍)。对于W-Har DataSet,与最先进的工作相比,我们的基线架构需要2.04倍的能量和2.18倍的内存。此外,实验结果表明,我们的自适应架构是12.32%(机会)和11.14%(W-HAR)的节能,而不是我们的基线,同时提供类似的(机会)或更好的(W-HAR)性能,没有显着的记忆开销。
translated by 谷歌翻译